Weak ferromagnetism and spiral spin structures in honeycomb Hubbard planes

نویسندگان

  • M A N Araújo
  • N M R Peres
چکیده

Within the Hartree FockRPA analysis, we derive the spin wave spectrum for the weak ferromagnetic phase of the Hubbard model on the honeycomb lattice. Assuming a uniform magnetization, the polar (optical) and acoustic branches of the spin wave excitations are determined. The bipartite lattice geometry produces a qdependent phase difference between the spin wave amplitudes on the two sub-lattices. We also find an instability of the uniform weakly magnetized configuration to a weak antiferromagnetic spiraling spin structure, in the lattice plane, with wave vector Q along the Γ − K direction, for electron densities n > 0.6. We discuss the effect of diagonal disorder on both the creation of electron bound states, enhancement of the density of states, and the possible relevance of these effects to disorder induced ferromagnetism, as observed in proton irradiated graphite. PACS numbers: 71.10.Fd, 75.10.Lp, 75.30.Ds, 75.30.Kz, 81.05.Uw Submitted to: J. Phys.: Condens. Matter Weak ferromagnetism and spiral spin structures in honeycomb Hubbard planes 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش انتگرال مسیر برای مدل ‌هابارد تک نواره

  We review various ways to express the partition function of the single-band Hubard model as a path integral. The emphasis is made on the derivation of the action in the integrand of the path integral and the results obtained from this approach are discussed only briefly.   Since the single-band Hubbard model is a pure fermionic model on the lattice and its Hamiltonian is a polynomial in creat...

متن کامل

مطالعه مدل هایزنبرگ به روش خودسازگار گاؤسی بر روی شبکه‌ها‌ی لانه زنبوری و الماسی

The classical J1-J2 Heisenberg model on bipartite lattice exhibits "Neel" order. However if the AF interactions between the next nearest neighbor(nnn) are increased with respect to the nearest neighbor(nn), the frustration effect arises. In such situations, new phases such as ordered phases with coplanar or spiral ordering and disordered phases such as spin liquids can arise. In this paper we ...

متن کامل

Itinerant ferromagnetism in the multiorbital Hubbard model: a dynamical mean-field study.

In order to resolve the long-standing issue of how itinerant ferromagnetism is affected by lattice structure and Hund's coupling, we compare various three-dimensional lattice structures in the single- and multiorbital Hubbard models with the dynamical mean-field theory with an improved quantum Monte Carlo algorithm that preserves the spin-SU(2) symmetry. The result indicates that both the latti...

متن کامل

Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice

A spin liquid is a novel quantum state of matter with no conventional order parameter where a finite charge gap exists even though the band theory would predict metallic behavior. Finding a stable spin liquid in two or higher spatial dimensions is one of the most challenging and debated issues in condensed matter physics. Very recently, it has been reported that a model of graphene, i.e., the H...

متن کامل

Phase separation in the Hubbard model.

The Hartree-Fock ground-state phase diagram of the one-dimensional Hubbard model is calculated in the μ−U plane, restricted to phases with no charge density modulation. This allows antiferromagnetism, saturated ferromagnetism, spiral spin density waves and a collinear structure with unit cell ↑↑↓↓. The spiral phase is unstable against phase separation near quarter-, halfand three-quarter-fillin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006